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 

Abstract— In this paper, an odd generalized 

exponential-Gompertz (OGE-G) distribution which is capable 

of life tables to calculate death rates (failure) are considered. 

Based on simulated data from the OGE-G distribution, the 

problem of estimation of parameters under classical and 

Bayesian approaches are calculated. In this regard, the 

maximum likelihood estimates, and Bayes estimates under 

squared error loss function are obtained.  Also 95% asymptotic 

confidence interval and highest posterior density interval 

estimates are calculated. The Monte Carlo simulation will be 

conduct to study and compare the performance of the various 

proposed estimators. 

 

Index Terms— Asymptotic confidence interval, Bayesian 

estimation, Odd generalized exponential-Gompertez 

distribution, Highest posterior density interval, Maximum 

likelihood estimation, Monte Carlo Markov Chain, 

Metropolis-Hasting algorithm..  

 

I. INTRODUCTION 

  El-Damcese et al. (2015) proposed a new model, called an 

odd generalized exponential-Gompertz (OGE-G) distribution 

and studied its properties. Some statistical properties of this 

distribution have been derived and discussed. The quantile, 

median, mode and moments of OGE-G are derived in closed 

forms. The distribution of the order statistics are discussed. 

Both point and asymptotic confidence interval estimates of 

the parameters are derived using the maximum likelihood 

method and obtained the observed Fisher information matrix. 

Also an application on a set of real data to compare the 

OGE-G with other known distributions such as Exponential, 

Generalized Exponential, Gompertz, Generalized Gompertz 

and Beta-Gompertz is given. Applications on a set of real data 

showed that the OGE-G is the best distribution for fitting 

these data sets compared with other distributions considered. 

The cumulative distribution function (cdf) of the OGE-G 

distribution is given by 

 

 
 

where  is the shape parameter and  are the scale 

parameters. Figure (1) illustrated the behavior of the cdf of 

OGE-G distribution at  and  for some 

various values of . 
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The probability density function (pdf) of the OGE-G 

distribution is given by 

 
Figure (2) illustrated the behavior of the pdf of OGE-G 

distribution at  and  for some various 

values of  

 
Figure 1: Cumulative function of OGE-G distribution at 

different parameters 
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Figure 2: Density function of OGE-G distribution at different 

parameters 

 

The hazard rate function of OGE-G distribution can be 

obtained from 

 

and its shape is illustrated in Figure (3) at  and 

 for some various values of . 

 

 
Figure 3: Hazard rate function of OGE-G distribution at 

different parameters 

For parameter estimation of the unknown parameters of the 

OGE-G distribution  there are two methods: 

Maximum likelihood estimation and Bayesian estimation. 

II. MAXIMUM LIKELIHOOD ESTIMATION 

Suppose that a random sample of  units whose lifetime 

follow an OGE-G distribution with cdf given in Eq. (1) and its 

pdf given in Eq. (2) and the likelihood function is defined as 

 
Thus, the likelihood function for the OGE-G distribution can 

be written as 

 
Let  

 
and 

 
thus, the likelihood function can be rewritten as  

 

By taking logarithm of  to obtain 

log-likelihood  as 

 

by differentiating the associated log-likelihood  with 

respect to  and  and equating them to zero, we get: 

 

 

 

 
where  
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and  and  are the MLEs of  and  

respectively. Now, the asymptotic variance-covariance matrix 

of the MLEs of  and  can be obtained by inverting 

the observed information matrix ( ), and is 

given by 

 
According to particular regularity conditions, the two-sided 

, , asymptotic confidence 

intervals for the parameters  and  can be obtained. 

III. BAYESIAN ESTIMATION 

For Bayesian parameter estimation consider  squared error 

loss function. It is observed that if the scale parameter  is 

known, the shape parameter  has a conjugate prior, which is 

a gamma prior. When both the parameters of the model are 

unknown, a joint conjugate prior for the parameters does not 

exist. We propose to use independent gamma priors for both λ 

and α having pdfs 

 

 

and for parameter  we propose to use exponential prior with 

pdf 

 

where the hyper-parameters  are chosen 

to reflect the prior knowledge about the unknown parameters. 

The joint prior for  and  is given by 

 

 
The corresponding posterior density given the observed data 

 can be written as 

 
The posterior density function can be written as 

 

 

 
where 

 

 

 
Thus, the posterior density can be rewritten as 

 

 

 

The Bayes Estimator of any loss function, say  

under the squared error, is given by 

 
Unfortunately, Eq. (4) cannot be computed for general 

. Thus, we provide the approximate Bayes 

estimates of  and  such as: 

 Lindley’s Approximation 

 Importance Sampling 

 Markov Chain Monte Carlo 

 

3.1 Markov Chain Monte Carlo ( MCMC ) 

Markov Chain Monte Carlo (MCMC) is a computer-driven 

sampling method. It allows one to characterize a distribution 

without knowing all of the distribution mathematical 

properties by random sampling values out of the distribution 

(Ravenzwaaij et al. (2016)). 

MCMC is particularly useful in Bayesian inference because of 

the focus on posterior distributions which are often difficult to 

work with via analytic examination. In these cases, MCMC 

allows the user to approximate aspects of posterior 

distributions that cannot be directly calculated (e.g., random 

samples from the posterior, posterior means, etc.). To draw 

samples from a distribution using MCMC: 

1. Starting with an initial guess: just one value that 

might be plausibly drawn from the distribution. 

2. Producing a chain of new samples from this initial 

guess. Each new sample is produced by two simple 

steps: 

 Proposal: a proposal for the new sample is 

created by adding a small random perturbation 

to the most recent sample. 

 Acceptance: the new proposal is either 

accepted as the new sample, or rejected (in 

which case the old sample retained). 

 

Proposal Distribution: A distribution for randomly 

generating new candidate samples, to be accepted or rejected. 

There are many ways of adding random noise to create 

proposals, and also different approaches to the process of 

accepting and rejecting, such as: Gibbs-sampling and 

Metropolis-Hastings algorithm. 

3.2 Metropolis-Hastings Algorithm 

Metropolis-Hastings (MH) algorithm is a useful method for 

generating random samples from the posterior distribution 
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using a proposal density. To implement the MH algorithm we 

have to define a proposal distribution  and an 

initial values   of the unknown parameters. For the 

proposal distribution, we consider a bivariate normal 

distribution, that is , where 

 and  represent the 

variance-covariance matrix, we may get negative 

observations which are not acceptable. For the initial values, 

we guess an appropriate values to  and . Therefore, we 

propose the following steps of MH algorithm to draw sample 

from the posterior density  (Dey and 

Pradhan (2014)): 

Step 1. Set initial value of  as . 

Step 2. For  repeat the following 

steps: 

1. Set . 

2. Generate a new candidate parameter value δ 

from . 

3. Set . 

4. Calculate 

 

5. Update  with probability ; 

otherwise set . 

 

The initial value for  is considered to be the MLE 

 of . While, the 

selection of  is considered to be the asymptotic 

variance-covariance matrix , where  is 

the Fisher information matrix. Notice that, the selection of  

is an important issue in the MH algorithm where the 

acceptance rate is depends on upon this. 

Finally, from the random samples of size M drawn from the 

posterior density, some of the initial samples (burn-in) can be 

discarded, and remaining samples can be further utilized to 

compute Bayes estimates. More precisely the Eq. (4) can be 

evaluated as 

 

where  represent the number of burn-in samples. 

 

3.3 Highest Posterior Density 

Suggesting utilizing the technique of Chen and Shao (1999) to 

calculate highest posterior density (HPD) interval estimates 

for the unknown parameters of the GIE distribution. The 

technique of Chen and Shao has been broadly utilized for 

constructing HPD intervals for the unknown parameters of the 

distribution of interest. In the present study, we will employ 

the samples drawn using the proposed MH algorithm to 

construct the interval estimates. More accurately, let us 

assume that  denotes the posterior distribution 

function of . Let us further suppose that 
 
be the pth 

quantile of , that is, 

, where 

. Notice that for a given , a simulation 

consistent estimator of  can be estimated as 

 

Here  is the indicator function. Then the 

corresponding estimate is obtained as 

 
 

where  and  are the ordered values of .   

Now, for  
 
can be approximated by 

 

Now to obtain a  HPD credible interval 

for , let 

 

here  denotes the largest integer less than or equal to . 

Then choose  among all the s such that it has the 

smallest width. 

IV. SIMULATION STUDY 

The aim of this section is to set a comparison the performance 

of the different methods of estimation discussed in the 

previous sections. A simulation study is employed to check 

the behavior of the proposed methods as well as to assess the 

statistical performances of the estimators, by using 

R-statistical programming language for calculation. Further, 

utilizing bbmle and HDInterval packages to compute MLEs 

and HPD interval in R-language. 

A Monte Carlo simulation study is employed to compare the 

performance of proposed methods of estimation. This method 

simulates 1000 generating data from OGE-G distribution with 

initial values: 

 

 Case      I:  

Case II: 
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Based on the generated data, firstly, we calculate maximum 

likelihood estimates and associated 95 % asymptotic 

confidence interval estimates. Note that the initial guess 

values are considered to be same as the true parameter values 

while obtaining maximum likelihood estimates.  

For Bayesian estimation, we calculate Bayes estimates using 

the MH algorithm under the informative prior. These priors 

are then plugged-in to calculate the desired estimates. While 

utilizing MH algorithm, we take into account the maximum 

likelihood estimates as initial guess values, and the associated 

variance–covariance matrix. At the end, we discarded 1000 

burn-in samples among the overall 5000 samples generated 

from the posterior density, and subsequently obtained Bayes 

estimates, and HPD interval estimates utilizing the technique 

of Chen and Shao (1999). 

All the average estimates for both methods are reported in 

Table 1 and Table 2.  Further, the first row represents the 

average estimates and interval estimates, and in the second 

row, associated means square errors (MSEs) and average 

interval lengths (AILs) with coverage percentages (CPs) are 

reported. The convergence of MCMC estimation for  

and  can be showed in figure (4) and figure (5). 

From tabulated values it can be noticed that depending on 

MSEs, higher values of n lead to better estimates. It is also 

noticed that the performance of the Bayes estimates obtained 

are better than the MLE estimates. It can also be noticed that 

the AILs and associated CPs of HPD intervals of Bayes 

estimates are better than those of MLE estimates.  

 

 

Table 1: Estimated values, interval estimates, MSEs, AILs and CPs for MLE and Bayesian (MCMC) for number of 

simulation 5000 

Initial:             

n Parameters 

MLE Bayesian (MCMC) 

Estimate 

MSE 

Asy CI 

AIL/CP 

Estimate 

MSE 

HPD interval 

AIL/CP 

25 

 
0.7057 

(1.2143) 

(0.0562, 4.2319) 

4.1757 / 95.50 

0.4264 

(0.0131) 

(0.3352, 0.5369) 

0.2016 / 98.70 

 
3.5399 

(9.5847) 

(0.1046, 10.809) 

10.7046 / 97.10 

2.5989 

(3.9400) 

(0, 6.5460) 

6.5460 / 97.80 

 
3.7582 

(13.4985) 

(1.089, 14.479) 

13.390 / 97.50 

3.3288 

(0.9026) 

(1.7431, 5.1585) 

3.4154 / 96.60 

 
0.6762 

(0.6772) 

(0, 2.5202) 

2.5202 / 96 
---- ---- 

50 

 
0.8056 

(1.6330) 

(0.1140, 4.8760) 

4.7619 / 96.50 

0.50137 

(0.0016) 

(0.4207, 0.5844) 

0.16366 / 97.60 

 
3.3264 

(6.6586) 

(0.0751, 9.0352) 

8.9601 / 97.50 

2.4846 

(3.4647) 

(0, 5.9960) 

5.9960 / 97.70 

 
3.2991 

(3.7233) 

(1.4116, 8.2259) 

6.8142 / 97 

3.5121 

(0.7700) 

(1.9673, 4.8140) 

2.8466 / 95.90 

 
0.53720 

(0.3831) 

(0, 1.7028) 

1.7028 / 97.20 
---- ---- 

75 

 
0.8102 

(1.3124) 

(0.0986, 4.3928) 

4.2942 / 98 

0.4809 

(0.0015) 

(0.4131, 0.5426) 

0.1295 / 97.20 

 
3.2606 

(6.1628) 

(0.1004, 8.9703) 

8.8698 / 97.50 

2.4359 

(2.7433) 

(0, 5.7272) 

5.7272 / 97.50 

 
3.0900 

(2.5756) 

(1.5337, 6.5564) 

5.0227 / 98.50 

3.5305 

(0.6046) 

(2.5516, 4.6725) 

2.1209 / 97.20 

 
0.50902 

(0.3165) 

(0, 1.5884) 

2.4073 / 97.50 
---- ---- 

100 

 
0.90965 

(1.5107) 

(0.1595, 4.3399) 

4.1804 / 95.50 

0.5166 

(0.0013) 

(0.4552, 0.5778) 

0.1226 / 97.40 

 
2.9454 

(4.3171) 

(0.0934, 7.2565) 

7.1631 / 97.80 

2.5776 

(2.9922) 

(0, 5.7052) 

5.7052 / 96.80 

 
2.9488 

(1.0926) 

(1.5884, 5.2357) 

3.6473 / 97.50 

3.0011 

(0.1742) 

(2.1712, 3.7708) 

1.5996 / 96.00 

 
0.4567 

(0.3128) 

(0, 1.3232) 

1.3232 / 97.50 
---- ---- 

Asy CI: Asymptotic confidence interval, AIL: Average interval length, CP: Coverage probability 
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Figure 4: Convergence of MCMC estimation for  and  when  
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Table 2: Estimated values, interval estimates, MSEs, AILs and CPs for MLE and Bayesian (MCMC) for number of 

simulation 5000 

Initial:             

n Parameters 

MLE Bayesian (MCMC) 

Estimate 

MSE 

Asy CI 

AIL/CP 

Estimate 

MSE 

HPD interval 

AIL/CP 

25 

 0.67919 

(0.9188) 

(0.10442, 3.5922) 

3.4877 / 97.50 

0.4749 

(0.00336) 

(0.3695, 0.5675) 

0.19798 / 97.00 

 2.9322 

(6.95297) 

(0.07706, 9.2593) 

9.1822 / 97.50 

1.9853 

(4.3739) 

(0, 5.9908) 

5.9908 / 97.60 

 5.9520 

(42.8007) 

(1.2524, 26.2899) 

25.0375 / 96 

3.4495 

(1.0806) 

(1.8197, 5.1523) 

3.3326 / 96.50 

 0.6567 

(0.6587) 

(0, 2.2211) 

2.2211 / 95 
---- ---- 

50 

 0.70250 

(0.8883) 

(0.1565, 3.8144) 

3.6579 / 97.40 

0.51179 

(0.0018) 

(0.43175, 0.5972) 

0.1655 / 98.30 

 2.8277 

(4.9761) 

(0.0778, 7.7629) 

7.6850 / 98 

1.9718 

(3.4255) 

(0, 5.3129) 

5.3129 / 96.80 

 4.6691 

(12.0931) 

(1.7066, 13.6274) 

11.9208 / 97.50 

3.6497 

(0.66417) 

(2.2955, 5.1080) 

2.8124 / 97 

 0.56298 

(0.2958) 

(0, 1.5913) 

1.5913 / 97.50 
---- ---- 

75 

 0.8119 

(1.1105) 

(0.2099, 3.8430) 

3.6331 / 97.50 

0.47658 

(0.00147) 

(0.41790, 0.5375) 

0.11969 / 97.60 

 2.5221 

(3.4426) 

(0.0715, 6.3853) 

6.3137 / 98 

1.9292 

(2.5634) 

(0, 5.1501) 

5.1501 / 97.80 

 4.2047 

(5.6127) 

(1.8958, 10.4970) 

8.6011 / 97.50 

3.7200 

(0.41486) 

(2.5351, 4.8078) 

2.2726 / 96.20 

 0.4996 

(0.2617) 

(0, 1.3773) 

1.3773 / 97.90 
---- ---- 

100 

 0.8458 

(1.1221) 

(0.22346, 3.6774) 

3.4539 / 98.30 

0.47266 

(0.00153) 

(0.41568, 0.52452) 

0.1088 / 97.40 

 2.4117 

(2.8903) 

(0.0768, 5.9538) 

5.8770 / 98.50 

2.0456 

(2.486) 

(0, 4.9778) 

4.9778 / 96.80 

 4.0663 

(3.3185) 

(1.9830, 8.6559) 

6.6729 / 98 

3.8436 

(0.63456) 

(2.4418, 4.1761) 

1.7342 / 96.60 

 0.4684 

(0.2302) 

(0, 1.1928) 

1.1928 / 98.10 
---- ---- 

Asy CI: Asymptotic confidence interval, AIL: Average interval length, CP: Coverage probability 
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Figure 5: Convergence of MCMC estimation for  and  when  

V. CONCLUSION 

In this paper, the problem of estimation of the odd generalized 

exponential-Gompertz (OGE-G) distribution from classical 

and Bayesian viewpoint, were studied maximum likelihood 

estimates and associated asymptotic confidence interval 

estimates for the unknown parameters of a OGE-G 

distribution. Then, we calculated Bayes estimates and the 

corresponding HPD interval estimates were derived under 

informative priors. Using simulation study indicates that the 

performance of Bayes estimates is better MLE estimates. 

Though squared error loss function under Bayesian set up, yet 

other loss functions can also be considered. This research can 

also be extended to design of progressive censoring sampling 

plan and other censoring schemes can also be considered. 
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